Selasa, 27 Mei 2014

TUGAS KULIAH BAB 8 ANALISIS VARIANSI

Analisis Variansi

 1.  Pengertian dan Manfaat ANAVA
Analisis Varians (Analysis of Variance), merupakan sebuah teknik inferensial yang digunakan untuk menguji perbedaan rerata nilai. Sebagai sebuah teknik analisis varians atau yang seringkali disebut dengan anava saja mempunyai banyak keuntungan. Pertama, anava dapat digunakan untuk menentukan apakah rerata nilai dari dua atau lebih sampel berbeda secara signifikan atau. Kedua, perhitungan anava juga menghasilkan harga F yang secara signifikan menunjukkan kepada peneliti bahwa sampel yang diteliti berasal dari populasi yang berbeda, walaupun anava tidak dapat menunjukkan secara rinci yang manakah di antara rerata nilai dari sampel-sampel tersebut yan gberbeda secara signifikan satu sama lain. Uji T lah yang dapat menyempurnakan ini. Ketiga, anava juga dapat digunakan untuk menganalisis data yang dihasilkan dengan desain factorial jamak. Dalam desain factorial yang menghasilkan harga F ganda, anava dapat menyelesaikan tugas sekaligus. Dengan anava inilah peneliti dapat mengetahui antarvariabel manakah yang memang mempunyai perbedaan secara signifikan, dan varibel-variabel manakah yang berinteraksi satu sama lain.
Keuntungan lain dari anava adalah kemampuannya untuk mengetes signifikansi dari kecenderungan yang dihipotesiskan. Hasilnya disebut dengan analisis kecenderungan. Sebaagai contoh peneliti mengelompokkan siswa ke dalam empat kelompok berdasarkan tingkat kedisiplinannya seseorang akan semakin tinggi prestasi belajarnya. Untuk menguji hipotesis ini peneliti dapat menggunakan anava. Manfaat lain dari anava adalah, bahwa teknik ini dapat digunakan untuk menguji signifikansi perubahan varians dua ampel atau lebih. Dengan menggunakan teknik anava peneliti tidak perlu berkali-kali melakukan pengujian tetapi hanya cukup sekali saja. Disamping penghematan tersebut, seperti sudah dikemukakan diatas, dengan anava peneliti dapat melihat akibat dari interaksi dua faktor. Beberapa asumsi yang harus dipenuhi dalam uji anova adalah sebagai berikut :
a)      Varians homogeny (sama)
b)      Sampel kelompok independen
c)      Data berdistribusi normal
d)     Jenis data yang dihubungkan adalah : ada/tidaknya perbedaan rerata data numerik pada kelompok kategorik
Untuk uji normalitas dapat menggunakan koefisien of varians, histogram, K-S test. Sedangkan untuk menguji varians sama/tidak menggunakan Levene test. Alternative uji anova yang dapat digunakan adalah Kruskal-Wallis.
1.      Harga-Harga yang Diperlukan dalam Uji Analisis Varians
Untuk dapat menggunakan teknik anava dengan baik, perlu kiranya mengenal beberapa pengertian tentang harga-harga yang terdapat di dalam rumusnya. Baik dalam anava tunggal maupun anava ganda terdapat beberapa istilah teknis yang belum terdapat di dalam teknik-teknik sebelumnya. Harga-harga yang dimaksud adalah : sumber variasi, jumlah kuadrat (disingkat JK), rerata kuadrat atau mean kuadrat (singkat MK), dan harga F.
1.1     Sumber Variasi
Pengertian “sumber variasi” digunakan sebagai judul kolom dalam table persiapan anava. Hal-hal yang terkandung di dalam di bawah judul tersebut adalah hal-hal yang dipandang menunjukkan variasi sehingga menyebabkan timbulnya perbedaan nilain yang dianalisis. Sebagai sumber variasi misalnya perbedaan yang terjadi di antara kelompok, di dalam kelompok, dan interaksi antara dua faktor atau lebih.
1.2     Jumlah Kuadrat
JKtot = ∑X2-∑(X)2/N
Yang dimaksud dengan jumlah kuadrat adalah penjumlahan tiap-tiap deviasi nilai reratanya. Ada beberapa jenis jumlah kuadrat yang akan dijumpai dalam pekerjaan analisis varian : yakni jumlah kuadrat total, jumlah kuadrat antar kelompok, jumlah kuadrat dalam kelompok. Untuk anava ganda masih ada satu pengertian lagi yaitu kuadrat interaksi. Dengan rumus :
1.                                                                                                         
         ∑(X)2/N= faktor koreksi
JKant = ∑ [(∑Xk)2/nk- (∑X)2/N ]
 
2.
  k = banyaknya kelompok
   nk = banyaknya subjek dalam kelompok
JKtot = Jkant + Jkdal
3.
1.3     Pengertian Mean Kuadrat
 F = MKant/MKdal
Selain jumlah kuadrat, ada pengertian penting yang sangat berperan di dalam perhitungan dangan anava yakni mean kuadrat. Dengan mean kuadrat inilah harga F dapat diketahui, karena F diperoleh dari pembagian harga mean kuadrat. Mean kuadrat (rerat kuadrat) diperoleh dengan rumus :
2.      Jenis-Jenis Anava
Sesuai dengan banyaknya faktor yang terlibat, maka anava dibedakan secara garis besar menjadi dua yaitu :
1)      Anava tunggal atau anava satu jalan
2)      Anava ganda atau anava lebih dari satu jalan.

Tidak ada komentar:

Posting Komentar